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Note 

Laguerre Polynomials for Infinite- Domain Spectral Elements 

1. INTRODUCTION 

Laguerre polynomials are investigated in an effort to improve the generality of 
the spectral element method [ 11, specifically to improve accuracy in wake regions 
and to extend the method to efficiently solve external flow problems. Previous 
investigations estimated that Laguerre polynomials would have little practical use 
in spectral methods because of their poor ability to approximate general functions, 
as demonstrated by Gottlieb and Orszag [2]. Maday, Pernaud-Thomas, and 
Vandeven [3], however, point out that Laguerre polynomials should only be used 
for functions with simple behaviour at infinity. In this note, it is found that 
Laguerre-type elements may be used in conjunction with Legendre-type elements to 
resolve more accurately regions of outflow and infinite boundaries. 

2. FORMULATION 

In considering semi-infinite domains, the weighted residual form of the problem 
to be solved requires integrals with an upper limit of infinity as well as a weighting 
function of decaying type in order to relax the solution as x + co. Consider the 
Helmholtz problem which is stated as - u,, + 1’~ = f with boundary conditions 
u(0) = 0 and U,(X + co) -+ 0. Its variational statement is written as: Find u E Hh 
such that 

5 
CD 

v,u,e- “dx + A2 
s 

Oc vue--‘dx = Ia vu,e-Xdx + /I vfeeXdx VVEH& (1) 
0 0 0 0 

where Hi is the Sobolev space of functions which are square integrable with respect 
to the measure e-“dx and whose derivatives are square integrable with respect to 
the measure e-“dx, and which vanish at the domain boundary x =O. From this 
statement, we see that the semi-infinite domain description as defined here has the 
usual symmetric positive definite elliptic term, as well as an additional convective 
term. Numerically, the elliptic term is treated implicitly and is solved by a conjugate 
gradient method, whereas the convective part is treated explicitly. Note that if we 
were to solve a convective-diffusive problem VU,, + U, =f with small viscosity v, 
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treating the additional convective term of the order VU, explicitly does not cause 
stability problems since the u, term dominates. The boundary condition at x = 0 is 
a simple ,Dirichlet boundary condition u(0) = 0, whereas the boundary condition at 
x + co must be a natural boundary condition. The discretized form of this equation 
is obtained by quadrature estimation of each integral. 

Gauss-Radau type Laguerre quadrature is used since it accurately performs the 
necessary quadratures in the e-” weighted norm. Quadrature is exact for any 
polynomialf(x) of degree < 2N and is written as 

i‘ If(x) e-“dx = 5 wf(xi), 
i=O 

where the N+ 1 collocation points xi are defined as the zeros of xLh+ ,(x) and 

1 
wi= (N+ 1) LL+l(xi)’ 

Gauss-Radau quadrature as defined above includes the boundary point x = 0 as a 
collocation point and excludes the right-hand infinite boundary. (For a finite 
domain, Gauss-Lobatto quadrature is used since it includes both boundary points 
as collocation points.) The Laguerre polynomials LN(x) are defined by the ordinary 
differential equation 

XL;(X) + (1 -x) Lb(x) + NL,(x) = 0. (4) 

Applying Gauss-Radau-Laguerre quadrature to (1) gives 

(5) 

where the notation uj signifies u(xj), summation is implied by repeated indices, and 

In the above, u has been represented by the series 

u(x)= ; Uihi(X), 
i-0 

where the interpolation function is given as 

(7) 

-xLk+ I(X) 
hi(x)= (N+ 1) LNtl(xi)(x-xi) (8) 
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and the associated interpolant derivative operator as 

D,= 
L Nf l(Xi) 1 
LN+ lCx,) Cximxj) 

for i#j 

1 =- 
2 

N =-- 
2 

for i=j#O 

for i=j=O. 

(10) 

(11) 

We note that it may be useful in other contexts to use the Laguerre functions 
defined by 

q&(x) = e -x’2Ln(x) (12) 

as an expansion basis instead of the Laguerre polynomials alone. Much of the 
formulation is the same as presented here. The proper norm in that case would be 

l)u112 = jam u(x)’ dx c 5 wiu(xi)2 
i=O 

(13) 

which is similar to the present formulation only the edx behaviour is included in 
the pointwise value instead of the norm evaluation. 

Laguerre elements can be used consistently with other type elements such as 
Legendre. This is due to the fact that the boundary terms in the variational 
formulation cancel automatically as follows: consider the Helmholtz problem where 
Legendre spectral elements are used for the domain [--a; 0] and the Laguerre for 
[O; co [. The boundary terms are from the Legendre part - uu, ]Y, and from 
the Laguerre part -uu,e -x]7. The terms at x = 0 cancel, providing a weak C’ 
condition automatically at the element interface and avoiding the need for any 
special patching techniques. The remaining boundary terms are determined by 
boundary conditions at --a and cc. 

3. RESULTS 

The method is tested in several situations which reveal some interesting points 
of this formulation. The first is a question of numerics which is particular to 
the Laguerre formulation. The second is concerned with the correct boundary 
condition formulation that should be used at the infinite boundary. 

The Laguerre spectral element formulation involves calculations of polynomials 
of large orders with large arguments since the xi behave approximately as 
xi m (j + 1 )‘/(N + 1) for j 2 1, which are multiplied by the weights which become 
exponentially small as N increases, since wiw ((N + 1) xTN+*)-‘. These numbers 
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FIG. 1. Log-linear plot of condition number vs polynomial order N for the scaled and unscaled 
cases. 

lead to problems in the machine calculations and accuracy is lost. The Laguerre- 
discretized (second-order derivative) operator matrix is found to have a condition 
number which increases exponentially with N. Upon resealing the operator matrix 
with a diagonal matrix of the Laguerre weights, the growth of the condition 
number is limited. This is illustrated in Fig. 1, where the condition number is 
plotted against N in a log-linear fashion for the scaled and unscaled cases. 

The simple one-dimensional solution to the Helmholtz equation - u,, + A*u =f is 
compared to the exact solution xePX forf=(2+(A*-l)x)ePx,I=1,andN=13, 
in Fig. 2. As expected, the error at the outlying points of the domain is very large. 
Only 10 points are shown here for reasons of scaling the plot. However, if the error 
is measured in terms of the following weighted H’ error norm, 

(14) 

where the )I f Ile-x norm is defined as 

(15) 
i=O 

it is only 7.10e4 for this case. 11 1 Ij.-X is the proper norm since the Laguerre polyno- 
mials are orthogonal in this weighted norm. The importance of the error at the out- 
lying points is diminished as measured by (14), (15), since the corresponding weight 
values become exponentially small. Figure 3 exhibits the continuity of the solution 
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FIG. 2. Comparison of exact and calculated solutions to -u,, + 1% = f with i = 2, 
f=(2+(12-l)X)e-‘, and N = 13. Dashed line indicates where the solution is no longer useful. 

FIG. 3. Comparison of exact and calculated solutions to -u,+1’u=f with 1=2, 
f=(2+(A2-I)X)e-x, using one Legendre element and one Laguerre element; N = 13, for both 
elements. Dashed line indicates where the solution is no longer useful. 
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at x= 0 when a coupled Legendre-Laguerre formulation is used on the same 
problem on the domain [ - 1; cc [ with the boundary condition u( - 1) = --e. 
N= 13 was used in both elements here, but the last four points of the Laguerre 
element are again not shown. The error norm for the case of coupled Legendre- 
Laguerre spectral element domains is defined as 

(16) 

where the Legendre norm is the usual L, norm over the interval [ - 1; 01, evaluated 
similarly by Legendre quadrature. The error norm for this problem is found to 
decrease exponentially with increasing N as shown in Fig. 4 and has the value 
E = 7.10e4 for the case of Fig. 2. 

Exponential convergence of the error norm does not occur for cases of the 
Helmholtz equation where A < 0.5 for the above formulation. This is attributed to 
the treatment of the natural boundary condition at cc. From the variational form 
(l), the boundary term UC%~]~ is used to generate the natural boundary condi- 
tion at infinity of U,(X -+ 00) = 0. The Helmholtz equation admits homogeneous 
solutions of the form e-lx and efAx and hence the product boundary term is of the 
form ve-Xe+AX m ] . For A - 1~ 0 this product is zero Vu and hence growing modes 
can still exist. Furthermore, for well-posedness it is necessary that the homogeneous 

100 ‘/‘I’I’/‘I’l’I”/l’l’I 

FIG. 4. Convergence plot of error norm vs polynomial order N per element for the coupled 
Legendre-Laguerre solution to -u,, + A2u =A with 1, = 2, f= (2 + (i2 - 1) x) emx. 
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solution not belong to HA. Following Maday et al’s definition of the Sobolev spaces 
HfL [3], this implies at worst that the integral Jr e + 22xe--Xdx must not converge; 
that is, 2A - 1 > 0. Thus for cases where 1, < 0.5 this boundary condition is not 
sufficient and convergence behaviour is poor or unobtainable. Instead, a modified 
Laguerre formulation is used, defined by a simple resealing of the weighting func- 
tion to e-‘.‘. This corresponds to redefining the space of functions to HA.,, the 
space of functions which are square integrable with respect to the measure e-““dx 
and whose first derivatives are similarly integrable. Quadrature is then rewritten as 

(17) 

where tl is chosen to suppress the growing modes in the problem. The variational 
problem becomes: Find u E HA. ,, such that 

s 

cc 

.r 
xI v,w - ““dx + lb2 

0 
vue - ‘“dx = 1 x vu, e ~ ““dx + 1 uc vfe - ““dx QVE Hi,,. 

0 0 0 

(18) 

Using the same arguments as above, the requirement for convergence becomes 
2a--cc>o. 

This method is found to be successful, giving exponential convergence when a is 
chosen properly, that is, in a range found to be in the neighbourhood of 21 and 
with a < 21. Equation (17) indicates that the modified Laguerre formulation is 
simply a resealing of the quadrature points distribution that gives better resolution 
for each case, i.e., each 1. In all cases the error norm is reduced by several orders 
of magnitude as illustrated in Fig. 5. This figure shows the error norm for the 
modified Laguerre formulation as a function of c( for the case A = 0.1 and N = 21. 
Note that the error norm is a minimum in the vicinity of c( = 0.18, whereas the solu- 
tion was unobtainable for the usual Laguerre (a = 1). This is consistent with the 
findings of Maday et al. [3], which show that the larger the coefficient CI, the 
smaller the approximation error is. For c( = 0.2 = 22 and increasing, the error grows 
rapidly, which verifies our convergence requirement of a < 21. Though the error is 
still poor (O( 10 ~ ‘)) even for the optimum c(, this is a result of the function we are 
trying to approximate: xeMx. Resealing with an a (or equivalently A) which is 
smaller than 1, actually makes it harder to approximate a function like xe ~ Y as 
x + co. More points are required in these cases, but the boundary condition is no 
longer responsible for the error since it is correctly posed. 

With the understanding of its above-described properties, the Laguerre formula- 
tion is found to be a useful way to treat unbounded regions in the spectral element 
method. Infinite boundaries were previously treated by domain truncation and 
algebraic, as well as exponential, mapping techniques [4, 5, 6 J and more recently 
by orthogonal rational basis functions [7,8]. Boyd [4] has shown that exponential 
mappings are uniformly poor tools for semi-infinite mappings since the transformed 
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FIG. 5. Plot of modified Laguerre error norm vs a for 1= 0.1 and N = 21. 

functions exhibit strong singularities, giving poor convergence. In agreement with 
Grosch and Orszag’s numerical experiments [S], Boyd has shown that domain 
truncation is best for functions that decay rapidly and algebraic mappings are best 
for functions with singularities. In either case, however, convergence depends on 
parameters whose optimum values are only determined by knowing the asymptotic 
behaviour of the function. In the present method, one must also use a parameter 
a which may be found by knowing the asymptotic behaviour of the function or 
more practically by reasonable estimation from error estimates from a previous 
choice of a. The Laguerre formulation replaces exponential mapping by using the 
e --x weighting function, which diminishes the importance of the error at the 
outlying points near infinity. The present method provides a variational formula- 
tion consistent with our finite domain techniques, compatible in particular with 
Legendre elements, providing exponential convergence for infinite domains. 

4. CONCLUSIONS 

In summary, it has been demonstrated that Laguerre polynomials may be used 
in the spectral element formulation for the solution of partial differential equations, 
particularly in regions of outflow or infinite boundaries. Their consistency with 
Legendre elements enables their use without any special treatment of the boundary 
interface. The only extra work involved is in the calculation of a new convection- 
type term which may be treated explicitly. Resealing of the discretized operator 
matrix with the weights of the Laguerre functions is necessary since the condition 
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number is found to increase exponentially with increasing polynomial order. 
Exponential convergence of the solution is obtained provided a natural boundary 
condition is imposed at 00. A modified Laguerre formulation involving a resealed 
weighting function may be used to suit each problem in suppressing growing modes 
in the numerical scheme. 
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